
/cog

The Globus Alliance contains the following members in alphabetical order:

The Java CoG Kit

Gregor von Laszewski
Argonne National Laboratory

University of Chicago

gregor@mcs.anl.gov

http://www.cogkit.org
Updated slides will be available on the CoG Kit web site

/cog

/cog

Funding sources & Acknowledgement

 The Java CoG Kit receives funding from the
following sponsors
 DOE MICS
 NSF NMI

 Previous versions of the CoG Kit also received
funding from
 NCSA Alliance

 Please, contact gregor@mcs.anl.gov in case you
like to work with us more closely.

 Acknowledgement:
 CoG Team, Globus Team, Globus Alliance, many

others as listed on www.cogkit.org

/cog

Community

 Call on the community to help us with
extending and improving the CoG Kit

/cog

Outline

 What is the CoG Kit?
 Basic definitions
 History of the CoG Kit
 CoG Kit in action
 Relationship to GT versions

 Selected Project Components
 Design: Abstractions
 Programming with Abstractions (Task Graphs)
 Visual components: Portals & Applications

 Conclusion

/cog

Introduction

/cog

Observation

 Problem
 Many application developers desire to program the Grid in

familiar higher level frameworks that allow rapid
prototyping.

 Solution
 We propose to reuse a variety of commodity tools,

protocols, approaches, methodologies, while integrating
Grid software based on the Globus Toolkit
 Easier development of advanced Grid services
 Easier and more rapid application development
 Easier deployment of Grid services
 Code reuse and use of component repositories
 Use of Web services as part of the Grids
 Widespread use of the Grid
 Use of commodity technology is not limited to the client!

/cog

Abstractions

 Hypothesis:
 With rapidly changing technologies it may

be beneficial to have an abstraction that
can be assisting in this technical challenge.

 Solution:
 CoG Kit abstractions are defined for

precisely that reason.

/cog

Result: CoG Kits

 CoG Kits make Grid programming simple
and new technologies are easy to integrate

 We focus on a CoG Kit for Java
 Others are possible Python, …

 Availability: Java CoG Kit since 1997

 Our designs are based on experience
reaching back to the beginnings of
Meta-computing and Grid-computing

/cog

Relationship towards GT

 Since GT3 CoG Kit is an essential part of GT

 CoG Kit protects from an evolving standard

 CoG Kit provides simple programming model

 CoG Kit supports portal and GUI developers

 CoG Kit is a bridge between application and Grid
middleware developers.

 CoG Kit has known to be working with
 GT1.0 GT2.4, GT3.0.2, GT3.2, GT3.21, SSH

 (under dev.) GT3.9.x, GT4, Condor

 (community) Unicore

/cog

Relationship to WS-RF
 Because …

 (Quote: Steve Tuecke, at a GGF meeting):
“WS-RF is still under development. The OASIS standards
process has just begun.”

 COG Kit
 Provides investment protection while standards are

developed.
 Provides a more sophisticated programming model than

just services
 Focus on what many high end-users need
 You can influence the direction of the CoG Kit by

partnering with us
 Will work with future versions of GT, SSH, Condor

(planed), …
 We intend to support and integrate with upcoming new

standards

/cog

History

/cog History (cont.)

CoG Kit was selected by IBM to demonstrate Grid computing in Boards of
Directors meeting

2001

von Laszewski joins ArgonneNov. 1996

CoG Team: LDAP browser wins Novel developers award1998

CoG Team: The experimental personal gatekeeper of the Java CoG Kit was
been able to be installed in less than 30 seconds on a PC including Windows,
a similar Globus service installed by an experienced administrator required one
to multiple days.

2000

Term Metacomputer is introduced1992

I-Way1995

Globus Team defines OGSI / Java CoG Kit for GT2.x and GT3.0/OGSI based,
includes visual components such as the CoG Kit Desktop, GridFTP interface,
GRAM interface

2002

Cog Team: The Java CoG Kit experimental Infogram Service architecture was
defined combining execution and information Services as a single Grid service.

2001

Term Java CoG Kit is introduced to include jglobus and other components in
a single toolkit

1999

Term Grid is introduced1998

Globus version 1 / first release of jglobus based on concepts of protocols
 and services includes a high throughput fault tolerant
 workflow prototype

1997

von Laszewski: Graphical Meta-computing environment1994

/cog History

CoG Kit receives best research poster award at SC 20042004

CoG team rewrites the workflow component and introduces GridAnt and a
new workflow engine called Karajan that contains flow and structural
control (DAGs, conditions, loops). The workflow concept is expandable.
Check pointing and minimal features for fault tolerance are available.

Result caching is possible based on method signatures.

2002 and
2003

WSRF is defined2003

A class project shows it is possible to define PBS and LSF providers (not
distributed with the CoG Kit)

2004

Major new Java CoG Kit release.

*GT2, GT3, GT4, SSH providers
* Workflow
* Graphical components
* New manual

2005

CoG team introduces the concept of Grid providers making it possible that
the CoG Kit can in principal submit to GT2, GT3, GT4, or SSH. Community
demonstrates also UNICORE provider.

2004

/cog

J a v aJ a v a

C o GC o G

K i tK i t

O G S A / O G S IO G S A / O G S I

G l o b u s T o o l k itG l o b u s T o o l k it

V e r s i o n 2V e r s i o n 2

F i l e T r a n s f e rF i l e T r a n s f e r

G r i d F T PG r i d F T P & R FT & R FT

M
i

d
d

l
e

w
a

r
e

M
i

d
d

l
e

w
a

r
e

P
o

r
t

a
l

w
a

r
e

P
o

r
t

a
l

w
a

r
e

A
p

p
l

i
c

a
t

i
o

n
s

A
p

p
l

i
c

a
t

i
o

n
s

G
r

i
d

G
r

i
d

S

e
r

v
i

c
e

s

S
e

r
v

i
c

e
s

J o b S u b m i s s i onJ o b S u b m i s s i on

S e c u r i t yS e c u r i t y

W o r k fl o wW o r k fl o w

T a s k M a n a g e m entT a s k M a n a g e m ent

I n f o r m a t i o n I n f o r m a t i o n

S e r v i c e sS e r v i c e s

G l o b u s T o o l k itG l o b u s T o o l k it

V e r s i o n 3V e r s i o n 3

N P A C IN P A C I

G r i d L a bG r i d L a b

OGCEOGCE

G A D UG A D U

A c c e s s G r i dA c c e s s G r i d

C h i m e r aC h i m e r a

G R I P /G R I P / U n i c o r eU n i c o r e

P e g a s u sP e g a s u s

C l i m a t eC l i m a t e

H E PH E P

C h e m i s t r yC h e m i s t r y

G e n o m eG e n o m e

P a r a m e t e r S t u d i e sP a r a m e t e r S t u d i e s

A s t r o n o m yA s t r o n o m y

P r o d u c t i o nP r o d u c t i o n

F r a m ework sF r a m ework s

J a v aJ a v a

P y t h o nP y t h o n

C h e fC h e f

N a n oN a n o M a t e r i a l s M a t e r i a l s

C o GC o G

L a u n c h p a dL a u n c h p a d

C a c t u sC a c t u s

G r i d S p h e r eG r i d S p h e r e

X C A TX C A T

P A C IP A C I

D O ED O E C E R NC E R N

G A F 4 JG A F 4 J

N i m r o d / GN i m r o d / G

G r i d A n tG r i d A n t

P e r lP e r l

C o GC o G

K i tK i t

OGCEOGCE

Use of CoG Kits

/cog

Design

/cog

Design

 Based on layered model

 Flexible

 Expandable

 Based on Java interfaces

 Abstracts protocols

 Abstracts services

 Provides workflow

/cog

CoG Kit is more than jglobus
Java CoG Kit v4

Documentation Source Community

Unicore prov iderjglobus

abstractions
(core)

Web Page

Manual

Wiki

Static pages

Gsissh/term

Cert managementgridfaces

Task management

Swing

portlets

Certificate Authority

Matlab

CoG Workflow/gridant

CoGtop /GridDesktop

CoGShell / Grid Shell

Essential part of
GT3.02
GT3.2, GT3.2.1
GT3.9.x, GT4.0

/cog

CoG Abstraction Layer

CoG CoG CoG CoG CoG

CoG Data and Task Management Layer

CoG Gridfaces Layer

CoG CoG

C
oG

 G
ridID

E

GT2
GT3
OGSI
classic

GT4
WS-RF Condor Unicore

Applications

SSH
Others
Avaki
SETI

Nano
materials

Bio-
Informatics

Disaster
Management Portals

CoG Abstraction Layer

CoG CoG CoG CoG CoG

CoG Data and Task Management Layer

CoG Gridfaces Layer

CoG CoG

C
oG

 G
ridID

E

Development
Support

CoG Abstraction Layers

/cog

Selected Project Components

/cog

Focus on Reusable APIs & Components

 Abstractions
 Provide a simple programming model

 Workflow
 Workflow abstraction

 Portals
 Supporting APIs, abstractions and implementations for

portals.
 jglobus1.2

 GSI security in Java
 GRAM protocal & client
 gridFTP protocol & client
 Myproxy client

 Not just API’s but also their implementation

/cogFocus on Abstractions and
Patterns

 Abstraction above Grid Toolkits
 Task Model

 Jobs, information query, file transfer, authentication,
others

 Gridfaces model
 Abstract views of GUIs to the Grid in different

implementations (SWING, JSP, Portlets, …)

 Data Types
 Queues, Sets, Brokers, Schedulers. Based on Task

model

/cog

Java CoG Kit abstractions

 A programming model based on a task model that
simplifies elementary Grid patterns such as job
execution, file transfer, and file operations.

 A programming model that includes execution
flows in the form of directed acyclic graphs (DAG).

 The programming model is decoupeling the
definition from the implementation, thus
providing independence from current and future
Grid versions.

 Only elementary Grid patterns are considered.
 It makes programming the Grid simple
 It makes developing Grid portals more easy
 Focus is selected functionality

/cog

Design

 ExecutableObject

 Task

 TaskGraph

 Handlers

 Events

 Service

/cog
Design

ExecutableObject

Identity Status

Task
TaskGraph

SecurityContext

ServiceContact

Specification

JobSpecification

FileTransferSpecification

FileOperationSpecification

TaskHandler

*

1

1

1

1

1

1

1

TaskGraphHandler

1

1

1

*

Dependency
1

1

* 1

Set Queue
1

1

1

1

Service* 1

/cog

Programming with Abstractions

/cog

A simple Programming Pattern
public class COG implements StatusListener{
 public void create() { … }
 public void submit () { … }
 public void statusChanged (StatusEvent e) { … }
 public static void main (String arg[]){

 try {
 COG cog = new COG();
 cog.create();
 cog.submit();
 catch (Exception e) {
 logger.error(“Something went wrong:”, e);
 }
}

/cog

Executing a Simple TaskGraph
TaskGraph tg = new TaskGraphImpl();

public void create () {
 // define tasks
 …..
 /* Add the tasks to the TaskGraph */
 tg.add(task1);
 tg.add(task2);
 tg.add(task3);
 tg.add(task4);
 tg.addDependency(task1, task2);
 tg.addDependency(task1, task3);
 tg.addDependency(task2, task4);
 tg.addDependency(task3, task4);
}

public void submit() {
 TaskGraphHandler handler = new TaskGraphHandlerImpl();
 try {
 handler.submit(tg);
 } catch (Exception e) {
 logger.error(``Some Error occured'', e);
 System.exit(1);
 }
}

Task 1

Task 2

Task 4

Task 3

/cog

Create a task
Task task1 = new Task();

JobSpecification spec = new JobSpecificationImpl();
spec.setExecutable(“/bin/ls”);
spec.addArguments(“-la”);
spec.setStdOutput(“output.txt”);

task1.setSpecification(spec);

// bind the task (late binding)

/cog

Status Monitoring
public void statusChanged (StatusEvent event) {

 Status status = event.getStatus();

 logger.debug(``Status changed to '' +
 status.getStatusCode());

 if (status.getStatusCode() == Status.COMPLETED) {
 logger.info(``Task Done'');
 elsif (status.getStatusCode() == Status.FAILED) {
 logger.info(``Task Failed'');
 System.exit(1);
 }
}

Users can design their own
Event handeling logic based
on status changes

/cog

Using the Handler

try {
 handler.submit (cog);
 } catch (InvalidSecurityContextException ise) {
 logger.error(``Security Exception'', ise);
 System.exit(1);
 } catch (TaskSubmissionException tse) {
 logger.error(``TaskSubmission Exception'', tse);
 System.exit(1);
 } catch (IllegalSpecException ispe) {
 logger.error(``Specification Exception'', ispe);
 System.exit(1);
 } catch (InvalidServiceContactException isce){
 logger.error(``Service Contact Exception'', isce);
 System.exit(1);
 }

Detailed
information
Can be retrieved
if exceptions are
used

/cog

Bind a Task to a Service
Service service = new ServiceImpl(Service.JOB_SUBMISSION);
service.setProvider(``GT3_2_1'');

// Set Security Context – e.g. certificates and such
SecurityContext securityContext =

CoreFactory.newSecurityContext(``GT3_2_1'');
securityContext.setCredentials(null); // e.g. set it to default in ./globus
service.setSecurityContext(securityContext);

// Set Contact – e.g. where to go to
ServiceContact serviceContact =
 new ServiceContactImpl(

“http://127.0.0.1:8080/ogsa/services/base/gram/
 MasterForkManagedJobFactoryService”);
service.setServiceContact(serviceContact);

task.setService(Service.JOB_SUBMISSION_SERVICE, service);

ServiceContact serviceContact =
 new ServiceContactImpl(“http://127.0.0.1:8080”);

/cog

Bind a Task to a Service
Service service = new ServiceImpl(Service.JOB_SUBMISSION);
service.setProvider(``GT3_2_1'');

// Set Security Context – e.g. certificates and such
SecurityContext securityContext =

CoreFactory.newSecurityContext(``GT3_2_1'');
securityContext.setCredentials(null); // e.g. set it to default in ./globus
service.setSecurityContext(securityContext);

// Set Contact – e.g. where to go to

service.setServiceContact(serviceContact);

task.setService(Service.JOB_SUBMISSION_SERVICE, service);

/cog CoG Kit Desktop

Grid
Shell

Job
Icons

Machine
Icons

Grid
Log

Native
Icons

File
Transfer
GUI

/cog Portlets: OGCE.org

/cog

Contributing

 You can contribute

 We have a module concept allowing
components to be integrated in the
distribution easily

/cog

Conclusion

 Programming with CoG abstractions is simple

 We envision multiple programming models in CoG

 We envision multiple backend services

 We can support multiple protocols

 We like to engage the community

 Contributions:
 CA management, Unicore provider, gsissh

 These contributions are being integrated.

